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SynCOM: A tool for simulating coronal outflows
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Abstract SynCOM is a package of procedures written in IDL (Interactive Data
Language) that simulates transient solar wind flows. Each function within Syn-
COM handles specific tasks, such as initializing parameters, generating synthetic
profiles, creating Gaussian blobs to represent solar wind features, and producing
high-resolution images of the solar corona. This modular design allows users
to call or customize individual functions independently, providing flexibility
to adjust simulations to different observational or solar wind conditions. The
software architecture is designed to facilitate SynCOM, which effectively cre-
ates synthetic datasets for testing and verifying feature tracking algorithms. It
also takes advantage of the robust capabilities of the IDL for high-performance
scientific computing.

Keywords: Modeling, Flow tracking, Solar Wind, Community Engagement,
Synthetic Model

1. Introduction

The challenge of mapping the global flow of the solar wind, especially in the
outer corona and inner heliosphere, remains a key issue in heliophysics. The
Flow Tracking Challenge has already shown the necessity and effectiveness of
a testbed using the initial SynCOM model to refine the tracking algorithms.
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This highlights the need for further development of robust models for algorithm
validation.

While the upcoming PUNCH mission aims to capture solar wind structures
with unprecedented resolution, a testbed like SynCOM is crucial for providing a
ground truth for flow-tracking methods. Tracking solar wind features is complex
because of its variable nature, which causes uncertainties in velocity measure-
ments. The Flow Tracking Challenge revealed that feature-tracking algorithms,
such as optical flow and distance-time (DT) plotting, lack accuracy without a
ground-truth reference. SynCOM, Synthetic Corona Outflow Model, addresses
this need with a data-driven approach that bridges observational data with solar
wind dynamics.

2. SynCOM: The algorithm

SynCOM is essential for mapping solar wind outflows by integrating simulations
with real observations. This framework allows for precise comparisons between
feature tracking algorithms, ensuring that future data from missions like PUNCH
can be effectively used to understand and map solar wind dynamics.

SynCOM is a data-driven statistical model designed to emulate the key at-
tributes of transient solar wind flows without relying on complex physics-based
equations. Its core principle is to provide a fast and memory-efficient solu-
tion capable of generating numerous simulations of the dynamic solar corona.
These simulations, configured with specific kinematic parameters, help facili-
tate the interpretation of observational data and the validation of flow tracking
methodologies in the scientific community.

A central goal of SynCOM is to create a synthetic dataset for training and
testing solar wind tracking algorithms. Current algorithms, developed on obser-
vational data, lack a ”ground truth” to verify their accuracy. SynCOM addresses
this limitation by providing synthetic data with spatial and temporal properties
statistically similar to those of real observations, but with known local flow
speeds. This allows developers to evaluate the performance of their algorithms,
identifying areas where improvements are needed based on the ground truth
provided by SynCOM.

The IDL source code for the SynCOM software suite is available at zen-
odo.org/records/13357546 (Moraes Filho et al. 2024), offering access to the
high-resolution simulations of transient solar wind flows described in this work.

2.1. The Propagating Gaussian blobs

The design of SynCOM was inspired by simulating the solar wind outflow em-
anating from the Sun. This led to the representation of solar wind clumps
as radially expanding two-dimensional Gaussian perturbations. In this study,
these structures are based on observations of plasma blobs that move outward
from the corona, as documented by Sheeley et al. (2009). According to their
findings, these irregularities begin around 3-4 R⊙ from the center of the Sun as
compact blobs of material, approximately 1 R⊙ in length and 0.1 R⊙ in width,
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Figure 1. SynCOM blob example. This representation displays a Guassian blob sample,
designed to emphasize its shape and size. In this instance, the brighter blob stands out in
the image, appearing to be centered at angle 301 degrees and extending from 7.2 to 7.6 solar
radii.

separating from the tips of coronal streamers. The propagating Gaussian blob is
a mathematical model of a transient propagating coronal feature represented in
plane polar coordinates (Moraes Filho et al. 2024):

G(θ, r) = G0 exp

(
–

[
(θ – θ0)

2

2L2
θ

+
(r – r0(t))

2

2L2
r

])
, (1)

where θ and r are respectively the position angle (θ, measured counterclockwise
from the North pole at the solar limb) and the radial coordinates of the Gaussian
blob, θ0 is the central θ position of the blob, r0(t) is its central radial position
evolving as a function of time t, Lθ and Lr are the characteristic sizes of the blob
in the θ and r direction, correspondingly, and G0 is the peak intensity of the
blob. For the purpose of this paper, θ0 is chosen to be time independent, which
results in the strictly radial propagation of the blobs.

As defined in equation 1, each Gaussian blob is a two-dimensional inten-
sity array that changes over time and is determined by a four-element vector
of adjustable parameters [θ0, r0, Lθ, Lr], which specify the blob’s position and
shape.

Figure 1 shows a Gaussian blob, originating from θ = 301◦ with a core at
7.4R⊙. This paper uses the Heliocentric Radial Coordinate System as described
by Thompson (2006). The subsequent discussion will elucidate the methodology
used by the model to generate a single simulated image.

We have developed a method to produce synthetic high-resolution images of
solar wind density by simulating the motion of multiple Gaussian blobs within
the solar corona.

Having established the SynCOM theoretical framework, we now discuss its
computational implementation in IDL modules. These modules sequentially han-
dle parameter initialization, data loading, blob creation, and synthetic image
generation, all aimed at simulating solar wind outflows. The following discussion
will elaborate on the function of each module in this process.

3. Modules

This section outlines the key components of the SynCOM model, which are
responsible for simulating solar wind dynamics. Each module serves a distinct
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purpose, from initializing essential parameters to generating high-resolution syn-
thetic images. This section details the functionality of each module, including
parameter setup, data loading, simulation core processes, and the generation
of the final visual output. These modules work together to create an efficient
framework that can simulate solar wind flows, providing researchers with a
powerful tool for studying transient solar phenomena.

3.1. Parameter Initialization

Calling sequence: SYNCOM PRAMS,ModPramsStruct,SYNCOM N BLOBS = nblobs,
SYNCOM NX = nθ, SYNCOM NY = nr,
SYNCOM CADENCE = 300., SYNCOM PIXEL = 9744.

The SYNCOM PRAMS module is responsible for initializing the essential parameters
required to run the SynCOM simulation. These are the key parameters required
to start its operation, such as the number of blobs (nblobs) released, the number
of pixels in each dimension of the image (nθ, nr), and the initial launch position
of each blob (r0), all of which are stored in the ModPramsStruct. In the example
calling sequence, the image dimensions default to the resolution of COR2 images.

Additionally, the module allows for the inclusion of optional parameters that
provide greater control over the physical properties of the simulation. They
include the time cadence and the pixel size derived from specific instruments,
in particular the COR2 instrument, which operates with a 300 second cadence
and a pixel size of 9744 kilometers. Other parameters, such as acceleration, peak
brightness intensity, and noise level, enable more precise adjustments to the
simulation environment.

The values of these parameters are either obtained from observational data
or estimated using datasets such as those from the COR2 instrument (Howard
et al. 2008) on board the STEREO spacecraft (Kaiser et al. 2008).

3.2. Loading Profiles

Calling sequence: SYNCOMLOAD, ModPramsStruct, LoadStruc

The SYNCOMLOAD module is responsible for loading the profiles necessary for
the simulation, such as the period, radius, and velocity of the central position
of each blob (θ0). These profiles can be derived either from observational data
or imported from external sources, allowing flexibility in how the model is used.
This versatility enables SynCOM to be easily adapted to various types of datasets
and research needs.

The period, T, determines the frequency of blob appearances, where each blob
surfaces once during each period. The radius, L, dictates the size of the blobs,
while the velocity, V(θ), affects their central position as time, t, progresses. For
example, currently, the model uses a predefined function to determine the central
location of the blobs for their initial launch,

r0(t) = rB +V(θ)t (2)
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where rB is the blob’s position at the observation boundary, 5R⊙, and V(θ) is
the radial velocity for a specific θ0. Future versions of SynCOM aim to incorpo-
rate radial acceleration, which requires time-domain integration of Equation 2,
making the model more dynamic.

Each blob is then assigned with a θ0, which obtains its own set of variables
from the database, all of which are stored in the LoadStruc. This data-driven
approach ensures that each blob has distinct values for velocity, period, radius,
and initial radial and angular positions, allowing for the creation of a diverse
and realistic simulation of solar wind structures.

3.3. Simulation Core

Calling sequence: SYNCOM CORE, N BLOBS = N BLOBS, syncom data,

time t = t, time0 = t0, syncom version, scale factor = scale

The SYNCOM CORE module is the core of the simulation, which coordinates the
integration of all modules into a cohesive process. The simulation output is
stored in syncom data, which represents the data cube that captures the time-
dependent evolution of the solar wind structures. Before creating a blob, it is
necessary to convert the velocity, radial position, and radius into pixels. This
conversion is essential to accurately position the blobs in the simulation space,
allowing the model to replicate their real-world movement through the solar
corona.

The syncom version parameter specifies the version name for the simula-
tion output, which can be customized by the user based on their needs. The
simulation begins at time0 (the initial time of the simulation) and runs until
time t (the final time of the simulation), allowing users to control the duration
of the simulated period. Additionally, the scale factor parameter adjusts the
size of the blobs, offering flexibility in the granularity of the simulation, from
coarse-grained to fine-scale simulations.

The resulting pixel-based parameters enable precise tracking of each blob’s
evolution in the grid over time, ensuring that the simulation accurately captures
the solar wind’s transient behavior.

3.4. Image Generation

Calling sequence: SYNCOMIMAGE, ModPramsStruct, syncom version,

time 0, radial i, v array, period array, L array, PSI, time t, img

The SYNCOMIMAGE module processes each blob individually using the specific
variables assigned to it by the SYNCOMLOAD module. The creation of the blob
is based on equation 1, which defines the structure of the blob. These inputs
include radial i which is the initial radial position of the blob, controlling its
central position in the r-direction, v array the velocity for each position angle,
which determines the movement of the blob’s radial center over time according to
equation 2, period array defines how often the blob reappears in time, L array

controls the blob size, and PSI is the position angle array, which controls the
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blob’s central position in the θ-direction. Each blob is periodically created and
shifted radially to simulate its movement through the solar corona, generating
multiple instances at regular intervals to reflect the quasiperiodic nature of the
solar wind.

Though SYNCOMIMAGE is not directly invoked in the main process, it is re-
peatedly called by SYNCOM CORE at each time step, progressing from time 0 to
time t. The module accumulates the density distributions of all blobs in an
initially empty image array (img), which builds over time as more blobs are
added.

This process continues until all blobs are processed, producing an image that
captures the complexity of solar wind flows. The final image, which includes both
small- and large-scale dynamics, is saved as an FITS file. The syncom version

input determines the file name, allowing users to label the output according to
the simulation version or specific identifiers.

The scale factor input, provided by the SYNCOM CORE procedure, modifies
L array, adjusting the blob size and enabling the simulation to capture either
small-scale or large-scale dynamics (fine-scale or coarse-grained). This flexibility
allows researchers to tailor the simulation resolution to the needs of their study.
The FITS file format ensures high-resolution preservation for future analysis,
offering a detailed set of synthetic images to study the transient dynamics of
solar wind structures.

3.5. Visual Fidelity

Calling Sequence: SYNCOMNOISE, ModPramsStruct, img, new img,

file name, /noise add, /luminosity add,

rect img, /rectangular

The SYNCOMNOISE module is designed to enhance the visual accuracy of the
synthetic solar wind images by applying three key processes: noise addition,
brightness variation, and coordinate transformation. Each of these processes is
activated independently using specific keywords, allowing users to fine-tune the
output image to match observational data.

If the noise add keyword is set, random noise is added to the image. This
simulates the instrument and random noise that is typically encountered in
real observational data. The noise level is determined by the value provided
in the ModPramsStruct, ensuring consistency with the model parameters. This
function is essential for producing images that resemble those captured by the
instruments, adding realism to the simulation.

If the luminosity add keyword is set, the module modifies the brightness
behavior of the image. This process introduces intensity variations by applying
an inverse normalization procedure based on predefined intensity profiles derived
from the COR2 data. The image pixels are adjusted according to their mean and
standard deviation values, replicating the luminosity patterns observed in real
data. This allows the synthetic images to capture realistic brightness fluctuations
in solar wind structures.
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If the rectangular keyword is set, the module converts the image from polar
to rectangular coordinates. This transformation is useful for cases where a rect-
angular grid is required for further analysis or visualization. The function uses a
transformation to create a rectangular representation of the solar wind images,
maintaining the spatial relationships present in the polar data.

Each of these processes can operate independently or in combination, making
the SYNCOMNOISE module flexible and adaptable to different visualization and
analysis needs. The modified image is saved in new img, and if the rectangular
transformation is applied, the transformed image is stored in rect img. Optional
parameters such as file name can be provided for the intensity profile statis-
tics. This module allows users to apply a variety of visual modifications to the
simulation, helping to simulate realistic observational effects for synthetic solar
wind images.

4. Functions

This section details the functions included in the SynCOM package. Each func-
tion has a distinct role, such as generating propagating blobs and convert-
ing images from polar to Cartesian coordinates. These functions are executed
within specific modules whenever they are called, specifically within the modules
SYNCOMIMAGE and SYNCOMNOISE.

4.1. Gaussian Blob

Calling Sequence: result = GAUSSIANWAVE(npixel=npixel,

avr=avr, st dev=st dev)

The GAUSSIANWAVE function generates a 1D or 2D Gaussian wave to simulate
solar wind features propagating through space. The Gaussian is defined by the
pixel dimensions (npixel), central position (avr), and standard deviation or
width (st dev). The SYNCOM framework relies heavily on this function, as it
is called each time SYNCOMIMAGE produces a new synthetic image for simulations.

For a 1D Gaussian, npixel specifies the number of pixels along the x-axis
as [nx]. The central position and standard deviation are given as [avr x] and
[st dev x], respectively. The function then generates a 1D Gaussian curve based
on these values.

For a 2D Gaussian, npixel is specified as [nx, ny], where nx and ny represent
the number of pixels along the x and y axes, respectively. The central positions
and standard deviations are provided as [avr x, avr y] and [st dev x, st dev y],
respectively. The function generates a 2D Gaussian surface based on these inputs.

Either a 1D or 2D array is generated for the resulting Gaussian wave based
on the input. This function mainly serves to simulate propagating blobs in solar
wind studies, with the Gaussian wave depicting a smooth, symmetrical feature
in motion over time. In the case of 2D waves, the position of the blob moves
along the y axis, enabling the modeling of dynamic and time-evolving solar wind
phenomena in the radial direction.
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4.2. Coordinate Transformation

Calling Sequence: result = POLAR TO RECT TR(img p,

phi range, rho range, n=n)

The POLAR TO RECT TR function transforms a polar image into a rectangular
(Cartesian) coordinate system via triangulation. In contrast to GAUSSIANWAVE,
which is consistently called by SYNCOMIMAGE, POLAR TO RECT TR is only executed
by SYNCOMNOISE when the rectangular keyword is enabled. Once enabled,
this function creates an image format that is completely different from the one
generated by the SYNCOM CORE workflow.

The input is a 2D array, img p, where the first dimension represents azimuthal
angles and the second corresponds to radial distances. The transformation relies
on two key input parameters: phi range, defining the minimum and maximum
azimuthal angles (in degrees) and rho range, specifying the minimum and max-
imum radial distances (e.g. solar radii). An optional parameter n allows users to
control the number of bins in the x and y directions of the output rectangular
image, with a default value of 1024.

To perform the conversion, the function translates each pixel’s azimuthal and
radial coordinates into Cartesian coordinates. These coordinates are then used
to triangulate and interpolate the pixel values onto a rectangular grid. A mask
is applied to the region within the minimum radial distance, where the pixel
values are set to zero to simulate the central mask of the Sun, ensuring that the
output accurately reflects the structure of the original image.

The function ultimately returns the transformed rectangular image, the result,
which can be further analyzed or visualized in a Cartesian framework. This
polar-to-rectangular conversion is crucial for facilitating a deeper analysis of
solar wind features in Cartesian coordinates, enabling enhanced interpretation
and exploration of the data.

5. Example Workflow

To generate a set of synthetic solar wind images and enhance them with bright-
ness adjustments, as shown in Figure 2, follow this two-step process:

1. Generate Synthetic Images:
The SYNCOM CORE procedure is responsible for generating synthetic solar
wind images. It can handle the initialization of parameters and load the
necessary structures internally. To use it, provide the number of blobs, the
time frame, and optional parameters such as version and scale factor. For
example:
SYNCOM CORE,N BLOBS = 1000.,syncom data,time t = 100,time0 = 0,
syncom version = "example", scale factor = 1.0
This command will create a set of synthetic solar wind images, saving
them with the prefix ”example”. The 3D array syncom data will store the
simulated images as well as the parameters, including ModPramsStruct and
LoadStruc.
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Figure 2. Flowchart illustrating the workflow of the SynCOM framework for generating and
enhancing synthetic solar wind images. SYNCOM CORE orchestrates the process by integrating
two key structures: ModPramsStruct and LoadStruc. First, SYNCOM CORE initializes parameters
stored in ModPramsStruct, which is handled internally by SYNCOM PRAMS. Next, blob properties
such as positions, velocities, and sizes are loaded from LoadStruc via SYNCOMLOAD. After con-
verting these profiles into pixel units, SYNCOM CORE calls SYNCOMIMAGE to generate the synthetic
solar wind images for each time step, which are stored in the syncom data array, resulting
in the ”Result Image.” Finally, SYNCOMNOISE is applied independently to enhance the visual
fidelity of the images by adding brightness adjustments, producing the ”Enhanced Image”.
This modular workflow allows flexible image generation and post-processing.

2. Enhance the Simulated Images:
Once the synthetic images are generated, the SYNCOMNOISE procedure can
be used to add noise and simulate brightness variations based on prede-
fined intensity profiles. This step mimics real observational conditions and
improves the visual fidelity of the images. For example:
SYNCOMNOISE,ModPramsStruct,syncom data,new img,/luminosity add

n this case, the enhanced image will be stored in new img, with added
brightness adjustments because the /luminosity add keyword was set.

6. Conclusion

The development of SynCOM was aimed at addressing the complex task of
simulating transient solar wind flows, particularly the challenge of capturing
diverse solar wind phenomena with a robust and adaptable framework. Syn-
COM’s design is built around Gaussian blobs, which represent dynamic solar
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wind features. This simple yet effective structure allows for a broad range of
solar wind behaviors, from small-scale jetlets to large-scale coronal mass ejections
(CMEs).

The key strengths of SynCOM include its open source architecture, which en-
ables users to modify model parameters and customize simulations. This adapt-
ability facilitates a diverse range of research applications. For instance, custom
simulations conducted with user-defined parameters showed the model’s versa-
tility in accurately reproducing various solar wind features. These custom runs
validated the model’s ability to simulate transient solar wind structures across
different scales and velocities.

In conclusion, customized simulations demonstrated that SynCOM is an in-
valuable tool for solar wind research, providing a reliable and flexible platform
for modeling solar wind dynamics. These findings underscore SynCOM’s crit-
ical role in future solar research, especially with missions like PUNCH, where
understanding the small- and large-scale dynamics of the solar wind is essential.

References

Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Ko-
rendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C.,
Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D.,
Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles,
C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P.,
Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V.,
Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., Mc-
Mullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation
(SECCHI). Space Sci. Rev. 136, 67. DOI.

Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.:
2008, The STEREO Mission: An Introduction. Space Sci. Rev. 136, 5. DOI. ADS.

Moraes Filho, V.P., Uritsky, V.M., Thompson, B.J., Gibson, S.E., DeForest, C.E.: 2024, Syn-
COM: An Empirical Model for High-Resolution Simulations of Transient Solar Wind Flows.
arXiv e-prints, arXiv:2407.09383. DOI.

Sheeley, N.R., Lee, D.D.-H., Casto, K.P., Wang, Y.-M., Rich, N.B.: 2009, The Structure of
Streamer Blobs. The Astrophysical Journal 694, 1471. DOI.

Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449,
791. DOI.

SOLA: main.tex; 3 October 2024; 0:03; p. 10

https://doi.org/10.1007/s11214-008-9341-4
https://doi.org/10.1007/s11214-007-9277-0
https://ui.adsabs.harvard.edu/abs/2008SSRv..136....5K
https://doi.org/10.48550/arXiv.2407.09383
https://doi.org/10.1088/0004-637X/694/2/1471
https://doi.org/10.1051/0004-6361:20054262

	Introduction
	SynCOM: The algorithm
	The Propagating Gaussian blobs

	Modules
	Parameter Initialization
	Loading Profiles
	Simulation Core
	Image Generation
	Visual Fidelity

	Functions
	Gaussian Blob
	Coordinate Transformation

	Example Workflow
	Conclusion

